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Iterative Solution of the Boltzmann Equation 
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We define an iterative scheme to solve the nonlinear Boltzmann equation. Con- 
servation rules are maintained at each iterative step. We apply this method to a 
spatially uniform and isotropic velocity distribution function on the Maxwell 
and very-hard-particle models. A particular example is evaluated and results are 
compared with the exact solution. It shows to be a very fast convergent 
approach. 
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1. I N T R O D U C T I O N  

The nonlinear Boltzmann equation (NLBE) was proposed in 1872 by 
Ludwig Boltzmann. When a spatially uniform gas with no external forces 
acting on it is considered, the NLBE for the one particle velocity dis- 
tribution function f(v, t) reads 

~---f=B[ff] (1) 
~t 

where B[f , f ]  is a bilinear collision operator which depends on the inter- 
action law between the particles, i.e. 

B [ f f ]  = f d~' dv 1 gI(g, ~" ~')[f(v',  t) f(v'l, t ) - f ( v ,  t) f(vl ,  t)] (2) 

g = ( v - V l )  and g '=  (v '-v ' l)  are the relative speeds of particles before and 
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after the collision of cross-section I(g, ~," ~'); ~ is a unit vector in the direc- 
tion of g. 

Research on the NLBE was induced by the lack of an explicit solution 
for the associated initial and boundary problem. Recently many authors 
have suggested approximation methods, which provide a good description 
of the temporal evolution of the distribution function for some particular 
interaction models. 

Some of the earlier procedures are those related to perturbative 
methods. A first approach in this direction was presented by Hilbert ~1) in 
1912 and Enskog (2) and Chapman ~ in 1917. They expanded f as a power 
series of the Knudsen number. (4) The zero order of this expansion leads to 
the Euler's equations for an ideal gas; the first order provides the 
hydrodynamical Navier--Stokes equations. Higher orders give the Burnett 
equations. Recently, Bobylev (5) used a simplified model and showed that 
Burnett (second-order) equations do not improve, as hoped, the results 
obtained with the first-order equations (Navier-Stokes). This is a dis- 
cussion point about the convergence properties of the approach. 

Carleman (6) solved the NLBE for an isotropic gas of elastic spheres 
and proved the existence of solutions using an iterative method. This is 
considered one of the most simple cases; however, a general solution is not 
known. (7) 

The distribution function expanded in Hermite's polynomial is presen- 
ted by Grad. (8) When second-order terms are kept in the expansion the dis- 
tribution function is determined by thirteen moments. The results of this 
approximation agree with that of Hilbert, Chapman, and Enskog for some 
special cases. O) 

In 1951, WildO~ transformed the NLBE in an iteratively solvable 
integral equation. He applied the method for a gas with molecules 
interacting in such a way that the differential scattering cross section is 
inversely proportional to their relative velocities. The convergence of the 
method requires the cut-off of small scattering angles. The application of 
this method is exclusively restricted to this particular pseudo-Maxwellian 
interaction model. Later on, Arkeryd extended this approach to probe con- 
vergence of NLBE solutions for more general interactions, m) 

In Section II we consider an iterative method for solving the NLBE. It 
is based on a perturbation scheme in terms of the deviation from 
equilibrium. It is known that the linearized solution of the problem is 
proper when the deviation from equilibrium is small. Therefore, nonlinear 
effects--introduced through an iterative procedure--should improve the 
approximation. An analytical proposal of this method was previously out- 
lined by Cercignani ~4) and Shizuta, (12) but examples about the velocity of 
convergence were not given in the literature. 
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In Section IIIA, we describe the method for Maxwell molecules. In this 
case we expand the distribution function in terms of the eigenfunctions of 
the linearized collision operator, with coefficients that can be iteratively 
evaluated. The method is also applied to the very-hard-particle model 
which was introduced by Ernst and Hendriks (13~ in 1979. In Section IV, we 
evaluate a simple example for a particular initial condition. 

2. DESCRIPT ION OF THE M E T H O D  

The nonlinear Boltzmann equation for the distribution function f(v, t) 
of a spacially homogeneous gas can be written as follows 

~-7 f(v, t) -- L[ f ]  = A[f,  f ]  (3) 

with 

L[ f]  = B[ f  fo] + B[fo,f] (4.a) 

A [ f f ]  = B [ f , f ]  - B [ f f o ] - B [ f o , f ]  (4.b) 

fo represents the equilibrium distribution function, i.e 

e v2/2 

f(v, t) ~ fo(v) = (27z)a/2 (5) 

where d is the phase space dimension. The total number of particles and 
total energy are conserved 

f f ( v , t )dv=l  f f (v , t )vdv=O f f (v , t )  v2dv=d (6) 

When the deviation from equilibrium 

f(v, t ) -  fo(v) R(v, t)= (7) 
fo(v) 

is small, we can neglect the bilinear terms in R(v, t) obtaining the linearized 
Boltzmann equation 

0 
N fl(v, t ) - L [ L ]  =0 (8) 

Its solution is generally believed to be a good approximation for the dis- 
tribution function. However, it does not properly describe the time 
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evolution of the system when the initial deviation from equilibrium is 
important. In that situation we can calculate a second-order approximation 
including the bilinear term. Actually we propose an iterative scheme in 
order to solve the nonlinear Boltzmann equation 

otft(v, t ) -  L i f t ]  =A[f t_ l , f t_ , ]  l=  1, 2,... (9) 

Integration of this equation provides the/-iterative approximation for 
the distribution function. 

It is easily shown that the conservation laws (6) and the asymptotic 
condition (5) are verified by each iteration order. This is a remarkable 
improvement upon Wild's approach. 

3. A P P L I C A T I O N S  

A. M a x w e l l  I n te rac t ion  M o d e l  

First we study Maxwell models, where the collision rate reads 

gI(g, ~" ~') = c~(~. ~') (10) 

The solution of the NLBE for isotropic initial conditions can be 
represented by an expansion in Laguerre polinomials ~7) 

f(v, t)=fo(v ) ~ c.(t) L(. a/2) 1@2/2) (11) 
n = 0  

when the distribution function belongs to a Hilbert space with norm 

[ifl12 = f If(v, t ) l  2 dv < oo (12) 
fo(v) 

The coefficients c.(t) satisfy a set of sequentially solvable equations 

Co(t ) = 1 (13a) 

cl(t) = 0  (13b) 

n 1 t 
Cn(t)~-cn(O) e-A"'+ Z Pnm~oe--~At--~)Cm(Z)C"--m('C) dz (13C)  

m = l  



Iterative Solution of the Boltzmann Equation 99 

where 

If  2Ir(c1-1)/2 (sinx)a_2~(COSX)Ii_bc~no (1 
A, = F((d-  1 )/2) 

(, aS 
-[- COS2 X) n 

(14) 

/ n _ m  
1--cos  x dx (15) 

x 2 

The coefficients A, are the known eingenvalues of the linearized 
collision operator LCf ]J 7) 

We can formalize the iterative scheme (9) for the moments c, as 
follows 

c}~ t ) = 6,,o 
n 1 

:|t e (z) G - m  (r) dr --An(t--z) (l--1) (l--1) c~O(t) = G(O) e-A~ Z 12,,, cm 
rn=l ~ 

(16) 

In view that the first two moments c~o t) and c~ l) are the same for each 
iteration order, the number of particles and the total energy are conserved 
ifi the iterative scheme. 

The convergence of c~ t) to G can be proved by an algebraical com- 
parison of (13) with (16), obtaining that 

c~')(t) = G(t) (17) 

for 

l~> (n - 3)/2 (18) 

Therefore the partial sums 

N 
SN=fo(V) Z Cn(t) L(d/2)-l(v2/2) (19) 

n~O 

of expansion (11) will be exactly reproduced by the approximate solution 
f(t) for l i> ( N - 3 ) / 2 .  However, f (0  will contain further information about 
the higher moments not contained in SN. Actually, f~t) will converges to f 
when usual mathematical conditions are fulfilled. 
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B. V e r y  Hard  Par t ic les  

The collision rate that defines the bidimensional (d= 2) VHP model is 

gI(g, cos x) = �89 [sin xl (20) 

and the corresponding NLBE reads (13) 

~tf(v, t)=f dr, ~o dx g2 [sin x[ [f(v', Of(v], t ) - f (v ,  t)f(vl, t)] (21) 

The application of the Laplace transform 

G(z, t) = 2n fo ~ ve z~2/2f(v, t) dv 

f(v, t ) = 4 T i  f f  +i~ eZ~2/2G(z, t) dz 

(22) 

F > 0  (23) 

to (21) results in a nonlinear partial differential equation 

O # ) 1 
&-~-Tz +1 G(z't)=-(1-G2)z (24) 

with solution ~ 

1 + (z--  1) eZfi(z + t) 
G(z, t ) -  (25) (z - 1) - eZ~(z + t) 

where fl(z + t) can be determined from the initial distribution function. 
Following (3) and (4) we obtain the corresponding iterative resolution 

scheme for the G function 

at az +1 Gz(z, - ~ G t _  
2 1 

with 

(26) 

1 Go(z, t ) = - -  
l + z  

(27) 

For l = 1 this equation reads 

(~t -o~zz + 1) Gl(z' t)=-lzl 1-]-7-71 ( l+zl  _2G1)1 (28) 
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with solution 

1 E ez] GI(Z , t )=- i -~z l "+'z2~l)(z+t)-i--~2 (29) 

The arbitrary function c~ 1) is determined from the initial conditions G(z, O) 

~ ' ) ( z ) = ( ~ f  ) 2 e Z [ G(z, O)-  l@z l  (30) 

A general solution can be easily proved 

F 2,- ( eZ 1 
a'(z' t) =i - -~ k 1+z2 y~ ~'~(z + t ) \  i - ~ ]  _1 (31) 

n = l  

From (26) and (31) we obtain 

~ n--1 
0~(1) = 2 ~(l  1)(~(/-- 1) " n - -  1 - - m  - - n - - m  n r 1 (32) 

m = l  

Now we can prove that (31) reproduces the exact solution when 
l o  oe. Actually, (32) assures that the limit of ~(t) must be of the form 

c~(~ ') ,/3" (33) l ~ o o  

where/~ is as in (25). Replacing in (31) we obtain 

{ [ eZ ]"~ 
1 l + z  2 ~ / ? ( z + t ) - ~ z  j j (34) Gt(z, t) l~ o~' 1 +-~ n= 1 

which can be compared with the expansion of (25) in powers of/L 
Now, we will write the solution Gt in a suitable form for deriving the 

transformed solution. 
Defining 

l + Z [ G ( z , O ) - l @ z ]  (35) CT(z) = - U -  

and denoting a polynomial in x of degree m by Pm(X), we have 

~}[)(z) = { [(1 + z)/e Z ] U(z)}" P2,-,-,(U) (36) 

This relation can be proved by induction in (32). Replacing in (31), we see 
that Gt contains the initial conditions U(z+t) up to a 2 l-1 power. 
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Actually, the singularities of Gz are those introduced by the initial con- 
dition. 

For an initial condition with k poles located in ai, Gt is shown to be a 
proper rational function of l/z, i.e., one in which the degree of the 
numerator is smaller than the degree of the denominator. In this case 

1 + 2 l - 1  (I~z) n21-1k ~Z({gi~-t) ln 
G,(z, t )=  Z A(ff)(t) + E Z B")(t] (37) 

n = l  n = l  , = ,  . . . . .  / z  7--f 7+- t3 

The coefficients *{t) a . ,  B~t{ are directly given by the iterative method The 
associated distribution function is 

1 + 2 1 - L  

f,(v, t) = e -~2/2 ~. A(~Z)(t) L(.~ 
n = l  

21 ! k 

+ ~ ~ ~n,i,~Jn(i)t'~~176 ~ n -  1 [vz(ai+t)/2] (38) 
n = l  i = l  

This expression looks quite similar to the modified Laguerre expansion 
proposed by Hendriks and Ernst ~7) for Maxwell interaction model. 
However, a set of sequential equations for the recurrent determination of 
the coefficients A~ o and B(, 0, could not be found. 

IV. R E S U L T S  A N D  D I S C U S S I O N  

Now we check the method by comparing the approximate iterative 
solutions with the exact one for a particular example. 

Let us consider a VHP model with a simple initial condition given by 
the superposition of two Maxwellian, ~ i.e. 

f(v,  O) = aa e o~v2/2 + a2e-~ (39) 

The conditions of conservation and positivity of the distribution 
require 

a l  = 0-1 - -  

al +a2>~ 1 
0"10"  2 

a2 -- 1 and a2 = 0" 2 - -  (40.a) 
0"2 - -  0"1 0"1 - -  0"2 

and cr 2 > 1 (40.b) 

The Laplace transformed initial distribution reads 

G(z, O) al a2 
z + a t  z + a  2 

(41) 
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Fig. 1. Relative error E~, E2, and E 3 of the iterative approach as a function of energy for the 
VHP model at t =0.2. Initial conditions given by (39) with ~1 =20/11 and ~r2 = 20/9. 
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Fig. 2. Relative error El,  E2, and E 3 of the iterative approach as a function of time for 
VHP model at v2= 10. Initial condition as in Fig. 1. 
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Fig. 3. As in Fig. 1 for the Tjon-Wu model. 
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Applying (37) we obtain the following expression for the /-order 
solution of the iterative scheme 

a,(z, t)= Z A(,a(t) ~ + Z B(~',](t) LZ~-~+tJ 
n = l  n = l  

+ ~, B ~ ~t~ (G~ + t) (42) 
.,2~ , I t  + a2 ~TJ n = l  

We have calculated the coefficients A~ ~) and B~IJ for various values 
of the initial parameters as and a~. We define the relative error of the 
l-iterative solution in the following way 

Ez(v, t)=ft(v, t ) - f (v ,  t) (43) 
f(v, t) 

where f(v, t) is the exact distribution. 
In Fig. 1 we show the results for a 1 = 2 0 / l l ,  a2=20/9, and time 

t = 0.2. We observed an oscillatory convergence. Considering that the error 
is outlined by the enveloping curves, we observed a fast convergence of the 
iterative process. The El shows an error 10 times smaller than Et ~ over 
the whole energy range. Figure 2 shows Ez ( l=  1, 2, 3) for a fixed value of 
energy. We note that the convergence of the iterative approach is faster at 
large times and slower for large energies. Actually, the relevance of non- 
linear contributions is more important at small times. Furthermore, we 
verify that the iterative solution gives a satisfactory description of the 
relaxation to the equilibrium process over the whole energy range. 

We have also applied the method to the Maxwell model described in 
Section IIIA with the initial condition given by (39) and the same values of 
the parameters as in the VHP case. However, in this case, comparison of 
approximate and exact solutions is hidden by the twofold approximation 
implicit in (11 ). Actually, the orders of the iterative scheme and the N trun- 
cation of expansion (11) have to be taken into account. In this case, we 
define Et as the error of the series with coefficients c(~ a relative to the series 
with the exact ones, both truncated to the same order. For the Tjon-Wu 
model/~nm = 1/(n + 1) we were able to calculate the series up to N =  18. We 
note that at large time the double approximation scheme becomes critical 
and no conclusion can be stated about the velocity of convergence. 
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